The expression √(1+sinθ/ 1- sinθ) + √(1-sinθ/ 1+ sinθ) is equal to :

  1. 2 sec θ
  2. 2 tan θ
  3. 2 (1-sin θ)/cos θ
  4. 2 sin θ
Anurag Mishra Professor Asked on 27th December 2015 in Maths.
Add Comment
  • 1 Answer(s)

    Answer: (1) 2 secθ

    Explanation:-
    √(1+sinθ/ 1- sinθ) + √(1-sinθ/ 1+ sinθ)
    = √(1 + sinθ) (1 + sinθ)/(1 – sinθ)(1 + sinθ) + √(1-sinθ) (1- sinθ)/(1+ sinθ)(1-sinθ)
    = √[(1 + sinθ)²/1 – sin²θ] + √[(1- sinθ)²/1 – sin²θ]
    = √[(1 + sinθ)²/cos²θ] + [(1- sinθ)²/cos²θ]
    = (1 + sinθ)/cosθ  + (1- sinθ)/cosθ
    = (1 + sinθ + 1- sinθ)/cosθ
    = 2/cosθ
    = 2 secθ

    Then, the value of √(1+sinθ/ 1- sinθ) + √(1-sinθ/ 1+ sinθ) is equal to 2 secθ.

    Hence, the correct answer is option (1) 2 secθ.

    Anurag Mishra Professor Answered on 27th December 2015.
    Add Comment
  • Your Answer

    By posting your answer, you agree to the privacy policy and terms of service.