# If ∝+β=90º then the expression :

(tan∝/tanβ) +sin²∝ +sin^{2}β is equal to

- sec
^{2}∝ - sec
^{2}β - tan
^{2}β - tan
^{2}∝

**Answer: (1) sec²∝**

**Explanation:-**

∝+β=90º (Given)

β = 90º – ∝

tan∝/tanβ + sin²∝ + cos²β

= tan∝/tan(90º – ∝) + sin²∝ + cos²(90º – ∝)

= tan∝/cot∝ + sin²∝ + cos²∝

As we know that sin²∝ + cos²∝ = 1 and tan∝ = 1/cot∝

Then, tan²∝ + 1

= sec²∝

Hence ,the answer is (1) sec²∝.