If x=a(Sinθ+Cosθ) and y=b(Sin θ-Cosθ), then the value of (x²/a²)+(y²/b²) is:

  1. 3
  2. 4
  3. 2
  4. 1
Anurag Mishra Professor Asked on 10th December 2015 in Maths.
Add Comment
  • 1 Answer(s)

    Answer:  (3) 2

    Explanation:-
    X = a(Sinθ + Cosθ)
    Square on both side,
    X² = a² (Sin²θ + Cos²θ + 2 Sinθ Cosθ)
    X²= a² (1 + 2 Sinθ Cosθ)

    Y = b (Sinθ – Cosθ)
    Square on both side,
    Y² = b² (Sin²θ + Cos²θ – 2 Sinθ Cosθ)
    Y²  = b² (1 – 2 Sinθ Cosθ)

    Now, X²/a² + Y²/b²
    Put the value of Y²  = b² (1 – 2 Sinθ Cosθ) & X²= a² (1 + 2 Sinθ Cosθ)

    Then, a² (1 + 2 Sinθ Cosθ)/a² + b² (1 – 2 Sinθ Cosθ)/b²
    1 + 2 Sinθ Cosθ + 1 – 2 Sinθ Cosθ
    1 + 1
    = 2

    Hence, the correct answer is option (3) 2.

    Anurag Mishra Professor Answered on 10th December 2015.
    Add Comment
  • Your Answer

    By posting your answer, you agree to the privacy policy and terms of service.