# Find Out the Area Triangle of ABC, If

If two medians BE and CF of a triangle ABC, intersect each other at G and If BG = CG, ÐBGC =60^{o}, BC =8cm, then area of the triangle ABC is:

- 48 cm
^{2} - 64√3 cm
^{2} - 96 √3 cm
^{2} - 48 √3 cm
^{2}

**Warning**: Illegal string offset 'alt_text' in

**/srv/users/serverpilot/apps/edupil/public/wp-content/themes/edupil155/includes/theme.php**on line

**742**

**Warning**: Illegal string offset 'description' in

**/srv/users/serverpilot/apps/edupil/public/wp-content/themes/edupil155/includes/theme.php**on line

**743**

**Warning**: Illegal string offset 'alt_text' in

**/srv/users/serverpilot/apps/edupil/public/wp-content/themes/edupil155/includes/theme.php**on line

**742**

**Warning**: Illegal string offset 'description' in

**/srv/users/serverpilot/apps/edupil/public/wp-content/themes/edupil155/includes/theme.php**on line

**743**

** Answer : (4) **48 √3 cm

^{2}

**Explanation:-**

In the figure –

Three triangles are equal

Then, TriagleBCG = triangle ACG = triangle ABG

In triangle BCG,

GC = GB

Then, Angle GCB = Angle GBC

Then, triangle BCG is a equilateral triangle.

Then, the area of equilateral triangle BCG = 64 sqrt.3/4

= 16 sqrt.3

Then, the area of triangle ABC = 3 x 16 sqrt.3

= 48 sqrt.3

Hence, the answer is (4)48 √3 cm

^{2}